A ug 2 00 6 Second homology groups and universal coverings of Steinberg Leibniz algebras of small characteristic

نویسنده

  • Yucai Su
چکیده

It is known that the second Leibniz homology group HL2(stln(R)) of the Steinberg Leibniz algebra stln(R) is trivial for n ≥ 5. In this paper, we determine HL2(stln(R)) explicitly (which are shown to be not necessarily trivial) for n = 3, 4 without any assumption on the base ring. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal coverings of Steinberg Lie algebras of small characteristic

It is well-known that the second homology group H2(stn(R)) of the Steinberg Lie algebra stn(R) is trivial when n ≥ 5. In this paper, we will work out H2(stn(R)) explicitly for n = 3, 4 which are not necessarily trivial. Consequently, we obtained H2(sln(R)) for n = 3, 4. Introduction Steinberg Lie algebras stn(R) and/or their universal coverings have been studied by Bloch [Bl], Kassel-Loday [KL]...

متن کامل

un 2 00 6 Universal coverings of Steinberg Lie superalgebras st ( m , n , R ) when m + n = 3 , 4

The second homology group H2(st(m,n,R)) of the Steinberg Lie superalgebra st(m,n,R)(m + n ≥ 5), which is trivial, has been studied by A.V.Mikhalev and I.A.Pinchuk in [MP]. In this paper, we will work out H2(st(m,n,R)) explicitly for m + n = 3, 4 which is also trivial when m + n = 3, but not necessarily trivial when m + n = 4. Introduction Steinberg Lie algebras stn(R) and/or their universal cov...

متن کامل

ar X iv : m at h / 06 10 57 9 v 1 [ m at h . R T ] 1 9 O ct 2 00 6 Universal Central Extensions of the Matrix Leibniz

The universal central extensions and their extension kernels of the matrix Lie superalgebra sl(m, n,A), the Steinberg Lie superalgebra st(m, n,A) in category SLeib of Leibniz superalgebras are determined under a weak assumption (compared with [MP]) using the first Hochschild homology and the first cyclic homology group.

متن کامل

Universal enveloping algebras of Leibniz algebras and (co)homology

The homology of Lie algebras is closely related to the cyclic homology of associative algebras [LQ]. In [L] the first author constructed a "noncommutative" analog of Lie algebra homology which is, similarly, related to Hochschild homology [C, L]. For a Lie algebra g this new theory is the homology of the complex C,(g) ... ~ ~| g|-+ ... ~1 ~ k, whose boundary map d is given by the formula d(gl|1...

متن کامل

On universal central extensions of Hom-Leibniz algebras

In the category of Hom-Leibniz algebras we introduce the notion of Hom-corepresentation as adequate coefficients to construct the chain complex from which we compute the Leibniz homology of Hom-Leibniz algebras. We study universal central extensions of Hom-Leibniz algebras and generalize some classical results, nevertheless it is necessary to introduce new notions of α-central extension, univer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006